The Structure of a Barium Niobium Silicon Oxide with the Probable Composition $\mathrm{Ba}_{6+x} \mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{47}(x \simeq \mathbf{0 . 2 3})$

DOLETHA M. EVANS and LEWIS KATZ
Department of Chemistry and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06268

Received January 3, 1973

Abstract

Reaction of $\mathrm{BaO}, \mathrm{Nb}_{2} \mathrm{O}_{5}$, and Nb in mole ratios of 2.4:1.6:1 in an evacuated silica capsule at $1250^{\circ} \mathrm{C}$ produces a mixture of at least two products, one of which has the probable composition $\mathrm{Ba}_{6+x} \mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{47}$ ($x \simeq 0.23$). This compound has an hexagonal unit cell of dimensions $a=9.034 \pm 0.004 \AA, c=27.81 \pm 0.02 \AA$, probable space group $P 6_{3} / \mathrm{mcm}, Z=2$. Its structure has been determined from 942 independent reflections collected by a counter technique and refined by least squares methods to a conventional R value of 0.062 . The basic structure consists of strings of four NbO_{6} octahedra sharing opposite corners, each string joined to the next by edge sharing of the end octahedra, so that the c axis corresponds to the length of a strand of seven corner-linked octahedra. Chains of three such strands are formed by corner sharing between the strands. The chains in turn are joined by NbO_{6} octahedra and $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups in which the Si-O-Si linkage is linear. Barium atoms are in sites between the chains coordinated by 13 oxygen atoms. A second site, 15 coordinated, probably has a small amount of barium as well; the fractional occupancy for barium in this site is $\mathbf{0 . 0 7 6}$.

Introduction

The reaction of $\mathrm{BaO}, \mathrm{Nb}_{2} \mathrm{O}_{5}$, and Nb in the presence of SiO_{2} can result in at least three different hexagonal complex oxides containing silicon. The first to be studied was $\mathrm{Ba}_{3} \mathrm{Nb}_{6} \mathrm{Si}_{4} \mathrm{O}_{26}$ (1). This structure has infinite strings of NbO_{6} octahedra sharing opposite corners. These strings extend in the c direction. Each string is joined laterally to two others by corner sharing to form chains; the chains in turn are linked by corner sharing with $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups and by the electrostatic attraction of Ba^{2+} ions between the chains. A second compound, $\mathrm{Ba}_{3} \mathrm{Nb}_{21-x} \mathrm{Si}_{2} \mathrm{O}_{44}(x \simeq 0.2)$ has a different structure based on a 7 layer stacking of close-packed O_{7} and BaO_{6} layers with niobium and silicon occupying sites between the layers (2).

The compound described here, $\mathrm{Ba}_{6+x} \mathrm{Nb}_{14} \mathrm{Si}_{4}-$ O_{47}, has a structure related to that of $\mathrm{Ba}_{3} \mathrm{Nb}_{6}$ $\mathrm{Si}_{4} \mathrm{O}_{26}$. However, it is more complex and has some points of individual interest.

Experimental Methods

BaO was prepared from BaO_{2} by heating to $1000^{\circ} \mathrm{C}$ in vacuo for 1 hr . It was mixed with $\mathrm{Nb}_{2} \mathrm{O}_{5}$ and Nb (both obtained commercially) in a 2.4:1.6:1 mole ratio; the resulting gray powder was triturated under petroleum ether and placed in a silica capsule, which served as both container and reactant. The capsule was evacuated, sealed, and placed in a furnace at $1250^{\circ} \mathrm{C}$ for 1 wk . Upon removal from the furnace, the capsule was in a partially collapsed state, and on cooling it clouded and became crazed on the inside.
The reaction product consisted of black, highly reflective crystals, some embedded in the container walls, some aggregated into chunks that appeared to have been partially melted, and some loose and apparently single. The lastnamed occurred in two distinct habits: thick chunks only occasionally exhibiting flat faces, and very thin hexagonal plates, rarely complete but usually having at least one 120° angle visible.

Examination of several of the single crystals indicated that these two types of crystal represented two different compounds. The thin plates proved to be $\mathrm{Ba}_{3} \mathrm{Nb}_{21-x} \mathrm{Si}_{2} \mathrm{O}_{44}$ and the chunks $\mathrm{Ba}_{6+x} \mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{47}$. A rough density of $4.9 \mathrm{~g} / \mathrm{cm}^{3}$ was measured for the aggregated crystals (by the method of Archimedes, using water as the displacement liquid), which presumably consist mainly of the latter compound. This value is probably low because of trapped air in the aggregates.

A single chunky crystal was selected for structure determination and ground to a sphere of 0.14 mm diameter. Laue and precession X-ray photographs revealed a hexagonal lattice, Laue group $6 / \mathrm{mmm}$, with $h h l$ reflections present only for $l=2 n$. The probable space group is thus one of $P 6_{3} \mathrm{~cm}, P b c 2$, and $P 6_{3} / \mathrm{mcm}$. Photographic measurements gave $a=9.00 \AA$ and $c=27.67 \AA$.

Data for the structure solution were collected on a Picker Nuclear computer-controlled singlecrystal diffractometer, using graphite-monochromatized Mo radiation and a scintillation counter detector, and operated in the $\theta-2 \theta$ scan mode. The base scan width was $2.5-2.8^{\circ}$ in 2θ, with dispersion factor of 0.692 . Background was counted for 20 sec on each side of the peak, and three standard reflections were measured every 40 reflections. In all, three sets of data were collected. Due to errors in interpreting the photographic data, the first collection was based on an assumed c value half the true one and hence missed half the reflections. The data produced were not used in the structure determination, although the final cell parameters, $a=9.034 \pm 0.004 \AA$ and $c=$ $27.81 \pm 0.02 \AA(=2 x(13.906 \pm 0.009 \AA)$, were determined at this time by least squares refinement on the diffractometer angles of 12 reflections.

The second collection produced usable data, but instrument instabilities resulted in sizable variations in the standards with time. Dividing the data into a number of groups and scaling each group to bring standards into agreement gave standard deviations of the standards of 1.6, 2.6 , and 5.1%. However, the data were still not of very good quality, and when the conventional R value would go no lower than 0.124 for the final refined structure, a third set of data was collected. It was later discovered that part of the refinement problem arose because we were attempting to refine a nearly centrosymmetric structure.

The third data set included all possible reflections with $2 \theta \leqslant 25^{\circ}$, and those within the
range $0 \leqslant h \leqslant 9,-3 \leqslant k \leqslant 9$, and $-3 \leqslant l \leqslant 33$ for $25^{\circ}<2 \theta \leqslant 50^{\circ}$. The three standards had standard deviations of $1.4,2.2$, and 5.4%, with no scaling necessary. The 3329 reflections collected were corrected for background and those related by symmetry were averaged, reducing the data set to 670 reflections, of which 421 had intensities greater than three times the standard deviation of the background and were labeled observed. In the table of structure factors, the number listed in the column of observed F 's for unobserved reflections is determined from $I_{\text {obs }}+2 \sigma\left(I_{\text {obs }}\right)$.

The data set used for the final structure determination included all the reflections from the third data collection plus 242 reflections of raw intensity greater than 100 and $20>50^{\circ}$ from the second data collection. (The intensity restriction was imposed because of the pronounced inverse correlation between magnitude and R factor for the second-set reflections.) Lorentz and polarization corrections and a spherical absorption correction, with $\mu r=0.76$, were applied by the X-ray system program package (3), which was also used in subsequent calculations of Fourier maps, least squares refinements, and so forth.

Structure Determination and Refinement

The $h k 0$ reflections of the compound under study are very similar to those of $\mathrm{Ba}_{3} \mathrm{Nb}_{6} \mathrm{Si}_{4} \mathrm{O}_{26}$, indicating a resemblance between the projections along c for the two compounds. Ba atoms were therefore placed at $0.59,0, z$ positions; Nb at 0.24 , $0, z$ positions and Si at $1 / 3,2 / 3, z$ positions in the present compound to correspond to $\mathrm{Ba}_{3} \mathrm{Nb}_{6}$ $\mathrm{Si}_{4} \mathrm{O}_{26}$. Assuming a barium at $0.59,0,0$, a Patterson map indicated possible niobium z values of $0.072,0.211$, and 0.350 . The four-atom model thus arrived at was used as the starting point for a structure solution by difference Fourier methods. $\mathrm{Pb}_{3} \mathrm{~cm}$ was chosen as the trial space group.

The niobium position and population parameters and the barium x-parameter were refined and a ΔF map was calculated. This was then used to place further atoms and the cycle repeated, with isotropic thermal parameters also being refined on later iterations. After a few such cycles, R was down to the 10% range and the model was making chemical sense. At this point the indicated chemical formula was $\mathrm{Ba}_{6} \mathrm{Nb}_{14}-$ $\mathrm{Si}_{4} \mathrm{O}_{50}$, with $Z=2$.

Anisotropic thermal parameters were introduced for barium and niobium and all possible parameters refined. This process reduced the R factor by a few percent, but the parameters would not converge. Moreover, the thermal parameters for one niobium and several oxygens became nonpositive definite. A weighting function $w=1 / \sigma_{F}{ }^{2}$ was introduced, with

$$
\begin{aligned}
\sigma_{F}= & \frac{1}{(n)^{1 / 2}} \frac{1}{2(\mathrm{Lp})^{1 / 2}} \\
& \times\left[\left\{N_{T}+\mathrm{BG}+\left[0.02\left(N_{T}-\mathrm{BG}\right)\right]^{2}\right\} /\right. \\
& {\left.\left[N_{T}-\mathrm{BG}\right)\right]^{1 / 2} }
\end{aligned}
$$

for observed reflections and

$$
\sigma_{F}^{\prime}=\frac{1}{(n)^{1 / 2}} \frac{1}{2(\mathrm{Lp})^{1 / 2}}(\mathrm{BG})^{1 / 2}
$$

for unobserved reflections, where:
n number of reflections averaged
Lp Lorentz and polarization corrections
N_{T} total counts measured on the scan through the peak
BG (background counts accumulated in 40 $\sec) \times($ scan time $/ 40)$.

This produced a weighted R somewhat lower than the conventional R from the unweighted refinement, but did not help the convergence problem.

A careful examination of the model revealed that it had become nearly centrosymmetric. A statistical analysis of the magnitudes of the normalized observed structure factors indicated that a true center of symmetry was present. Accordingly, the atomic z-coordinates were altered so as to place the center at the origin and the probable space group became $P 6_{3} / \mathrm{mcm}$ (No. 193). There was no further difficulty in obtaining convergence.
Weighted refinement, however, still resulted in nonpositive definite thermal parameters for one niobium. Hence, the final refinement was done with unit weights. Neutral atom scattering factors with dispersion corrections included, from (4), were used throughout.

The formula $\mathrm{Ba}_{6} \mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{50}$ corresponds to a cell in which one oxygen occupies a position logically more suited to a barium; it is surrounded by 15 oxygens, with no niobium or silicon within bonding range. A corresponding site in $\mathrm{Ba}_{3} \mathrm{Nb}_{6} \mathrm{Si}_{4} \mathrm{O}_{26}$ is unoccupied by any species.

TABLE I
Atomic Parameters for $\mathrm{Ba}_{6+x} \mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{47}$ Space Group $\mathrm{P}_{3} / \mathrm{mcm}$ (No. 193) ${ }^{a}$

Atom: Position:	$\begin{gathered} \mathrm{Ba}(1) \\ 12 k \end{gathered}$	$\begin{gathered} \mathrm{Ba}(2)^{b} \\ 6 \mathrm{~g} \end{gathered}$	$\begin{gathered} \mathrm{Nb}(1) \\ 12 k \end{gathered}$	$\begin{gathered} \mathrm{Nb}(2) \\ 12 k \end{gathered}$	$\begin{gathered} \mathrm{Nb}(3) \\ 4 d \end{gathered}$	$\begin{gathered} \mathrm{Si}(1) \\ 8 h \end{gathered}$	
x	0.5932(2)	$0.6117(39)$	0.2383(5)	0.2371(3)	1/3	1/3	
y	0	0	0	0	2/3	2/3	
z	0.1076(1)	1/4	0.0434(1)	0.1833(1)	0	0.1918(3)	
U^{c}		0.592(711)				0.695(176)	
U_{11}	1.103(64)		2.401(162)	0.253(83)	0.427		
U_{22}	1.132		0.378	0.273	0.427		
U_{33}	1.012(59)		0.472(91)	$0.452(76)$	1.429(184)		
U_{12}	$0.566(43)$		0.189(72)	0.137(57)	0.213(62)		
U_{13}	0.159(57)		0.327(98)	-0.098(76)	0		
U_{23}	0		0	0	0		
Atom:	$\mathrm{O}(1)$	$\mathrm{O}(2)$	$\mathrm{O}(3)$	$\mathrm{O}(4)$	O (5)	O(6)	O(7)
Position:	$12 k$	6 g	$12 k$	12k	4 c	$24 l$	$24 l$
\boldsymbol{x}	0.2203(26)	0.2860(44)	$0.2060(38)$	0.1773(24)	1/3	$0.1801(20)$	0.1729(22)
y	0	0	0	0	2/3	$0.4898(22)$	$0.4841(23)$
z	0.1094(7)	1/4	0.5326(9)	0.6850(7)	1/4	$0.1694(4)$	0.4562(5)
U	1.017(358)	1.384(633)	2.213(572)	0.631(369)	1.501(791)	0.752(254)	0.977(295)

[^0]In this case, however, leaving the site empty results in a peak on a ΔF map, of approximately the magnitude of a peak produced by omission of one of the normal oxygens. Fully occupying the site with oxygen results in a very large isotropic thermal parameter for the oxygen; allowing both population and thermal parameters to vary results in a low occupancy factor and a negative temperature factor. Placing a barium with a low occupancy factor in the site and refining, however, leads to simultaneous convergence of population and thermal parameters. Accordingly, the probable occupant of the site is a barium of low population parameter, and the compound formula becomes $\mathrm{Ba}_{6+x} \mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{47}$, with $x \simeq 0.23$. The average niobium oxidation state is thus +4.68 , presumably corresponding to a mixture of $\mathrm{Nb}^{\mathrm{IV}}$ and Nb^{V}. Mixed oxidation states are known for other niobium compounds (5), and in this case account neatly for the dark color of the compound. The theoretical density is $5.09 \mathrm{~g} / \mathrm{cm}^{3}$, compared to the measured (presumably low) value of $4.9 \mathrm{~g} / \mathrm{cm}^{3}$. A final difference map showed no peak of more than $1 / 10$ the height of that produced by omission of an oxygen.

The final R factor is 0.062 overall, and 0.045 for reflections from the third data collection (presumably the more accurate reflections). The maximum shift/error ratio in the final cycle of refinement was 0.011 . The final parameters are given in Table I, and the unit cell contents are shown in stereo in Fig. 1. This and subsequent

Fig. 1. Stereo view of the unit cell of $\mathrm{Ba}_{6+x} \mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{47}$. $\mathrm{Ba}(1)$ is shown as striped circles, $\mathrm{Ba}(2)$ as stippled circles, Nb as small open circles, Si as small black circles, and O as large open circles.

Fig. 2. Niobium and silicon coordination in $\mathrm{Ba}_{6+x^{-}}$ $\mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{47}$.
drawings were produced by the program ORTEP (6), using a computer-controlled plotter.

Discussion

The basic structural unit in $\mathrm{Ba}_{6+x} \mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{47}$ is a string of four NbO_{6} octahedra joined end to end. These strings are joined laterally in groups of three by further corner sharing. Figure 5 shows four such groups and the connections among them. It may be seen that each group of three strings is joined to the next group along the c axis by edge sharing of the end octahedra. Thus there are essentially continuous triple chains of NbO_{6} octahedra extending along the c axis. Connections perpendicular to c between different triple chains are provided by $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups and single NbO_{6} octahedra. Four of the former and two of the latter appear in Fig. 5. Each $\mathrm{Si}_{2} \mathrm{O}_{7}$ group joins three separate triple chains by sharing corners with the second and third octahedra of one string in each group. The single NbO_{6} octahedra occur at the ends of the triple chains, so that each actually shares corners with octahedra in six different four-octahedron strings. This is clearly shown in Fig. 3, which shows a view along the c-axis of a slice of the unit cell centered around $z=\frac{1}{2}$, a region in which edge sharing occurs. The end octahedra of triple chains appear around the origins; single NbO_{6} octahedra are located at $1 / 3,2 / 3$ and $2 / 3,1 / 3$.
In the $\mathrm{Ba}_{3} \mathrm{Nb}_{6} \mathrm{Si}_{4} \mathrm{O}_{26}$ structure (1), similar triple chains of niobium-oxygen octahedra appear, but in that case there is no edge sharing; individual chains are infinite in length instead of

Fig. 3. View along c axis of a section from $z=0.45$ to $z=0.60$ of the $\mathrm{Ba}_{6+x} \mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{47}$ cell, showing NbO_{6} groups as solid octahedra and Ba as striped circles.
four octahedra long. The triple chains are joined by linear $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups, as in the present compound, but there is no niobium between chains.

Fig. 4. Stereo view of the barium coordination in $\mathrm{Ba}_{6+x} \mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{47} \mathrm{Ba}(1)$ is shown as an ellipsoid and $\mathrm{Ba}(2)$ as a circle.

The unit cell of $\mathrm{Ba}_{3} \mathrm{Nb}_{6} \mathrm{Si}_{4} \mathrm{O}_{26}$ is two octahedra high; the $\mathrm{Ba}_{6+x} \mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{47}$ cell may be constructed by stacking up four $\mathrm{Ba}_{3} \mathrm{Nb}_{6} \mathrm{Si}_{4} \mathrm{O}_{26}$ cells, with the top two rotated 60° relative to the bottom two. The second and third cells are then overlapped so that edge sharing of NbO_{6} octahedra is produced, the pairs of silicons brought together by this process are replaced by single niobiums, and $\mathrm{Ba}(2)$, which occupies a site vacant in $\mathrm{Ba}_{3} \mathrm{Nb}_{6} \mathrm{Si}_{4} \mathrm{O}_{26}$, is introduced to complete the structure.

So $\mathrm{Ba}_{3} \mathrm{Nb}_{6} \mathrm{Si}_{4} \mathrm{O}_{26}$ is a fairly close relative to $\mathrm{Ba}_{6+x} \mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{47}$. It may also be instructive to consider some more distantly related compounds. Except for the $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups, the framework of the $\mathrm{Ba}_{6+x} \mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{47}$ structure is composed of NbO_{6} octahedra sharing corners, and in some places edges. The occurrence of a framework of

TABLE II
Interatomic Distances and Angles in $\mathrm{Ba}_{6+x} \mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{47}{ }^{a}$

Distances (\AA)	
$\mathrm{Ba}(1)-\mathrm{O}(1)^{1}$	3.37(2)
$\mathrm{Ba}(1)-\mathrm{O}(1)^{2}$	3.19(1)
$\mathrm{Ba}(1)-\mathrm{O}(3)$	2.76(3)
$\mathrm{Ba}(1)-\mathrm{O}(4)$	2.99(2)
$\mathrm{Ba}(1)-\mathrm{O}(6)^{2}$	3.04(1)
$\mathrm{Ba}(1)-\mathrm{O}(6)^{3}$	2.83(2)
$\mathrm{Ba}(1)-\mathrm{O}(7)^{2}$	3.09(1)
$\mathrm{Ba}(1)-\mathrm{O}(7)^{3}$	2.84(2)
$\mathrm{Ba}(2)-\mathrm{O}(2)^{1}$	2.94(5)
$\mathrm{Ba}(2)-\mathrm{O}(2)^{2}$	3.15(3)
$\mathrm{Ba}(2)-\mathrm{O}(4)$	2.63(3)
$\mathrm{Ba}(2)-\mathrm{O}(5)$	2.80 (1)
$\mathrm{Ba}(2)-\mathrm{O}(6)^{2}$	3.34(1)
$\mathrm{Ba}(2)-\mathrm{O}(6)^{3}$	3.27(3)
$\mathrm{Nb}(1)-\mathrm{O}(1)$	1.84(2)
$\mathrm{Nb}(1)-\mathrm{O}(3)$ (atoms at different z values)	2.13(2)
$\mathrm{Nb}(1)-\mathrm{O}(3)$ (atoms at about same z)	2.04(4)
$\mathrm{Nb}(1)-\mathrm{O}(7)$	1.98 (2)
$\mathrm{Nb}(2)-\mathrm{O}(1)$	2.06 (2)
$\mathrm{Nb}(2)-\mathrm{O}(2)$	1.91(1)
$\mathrm{Nb}(2)-\mathrm{O}(4)$	1.93(3)
$\mathrm{Nb}(2)-\mathrm{O}(6)$	2.07(2)
$\mathrm{Nb}(3)-\mathrm{O}(7)$	1.98(2)
$\mathrm{Si}(1)-\mathrm{O}(5)$	1.62(1)
$\mathrm{Si}(1)-\mathrm{O}(6)$	1.63(2)
Angles (${ }^{\circ}$)	
$\mathrm{O}(1)-\mathrm{Nb}(1)-\mathrm{O}(3)[\mathrm{O}(3)$ and Nb at about same $z]$	95.4(8)
$\mathrm{O}(1)-\mathrm{Nb}(1)-\mathrm{O}(3)[\mathrm{O}(3)$ and Nb at different z 's]	167.1(12)
$\mathrm{O}(1)-\mathrm{Nb}(1)-\mathrm{O}(7)$	93.3(7)
$\mathrm{O}(3)-\mathrm{Nb}(1)-\mathrm{O}(3)$ (O's at same z)	104.0(12)
$\mathrm{O}(3)-\mathrm{Nb}(1)-\mathrm{O}(3)$ (O 's at different z 's)	76.9(9)
$\mathrm{O}(3)-\mathrm{Nb}(1)-\mathrm{O}(7)[\mathrm{O}(3)$ and Nb at about same $z]$	84.1(10), 167.5(10)
$\mathrm{O}(3)-\mathrm{Nb}(1)-\mathrm{O}(7)[\mathrm{O}(3)$ and Nb at different z 's]	96.1(8)
$\mathrm{O}(7)-\mathrm{Nb}(1)-\mathrm{O}(7)$	86.5(7)
$\mathrm{O}(1)-\mathrm{Nb}(2)-\mathrm{O}(2)$	170.8(13)
$\mathrm{O}(1)-\mathrm{Nb}(2)-\mathrm{O}(4)$	88.4(7)
$\mathrm{O}(1)-\mathrm{Nb}(2)-\mathrm{O}(6)$	82.3(6)
$\mathrm{O}(2)-\mathrm{Nb}(2)-\mathrm{O}(4)$	97.9(10)
$\mathrm{O}(2)-\mathrm{Nb}(2)-\mathrm{O}(6)$	91.0(9)
$\mathrm{O}(4)-\mathrm{Nb}(2)-\mathrm{O}(4)$	91.9(8)
$\mathrm{O}(4)-\mathrm{Nb}(2)-\mathrm{O}(6)$	90.5(8), 170.4(7)
$\mathrm{O}(6)-\mathrm{Nb}(2)-\mathrm{O}(6)$	85.7(6)
$\mathrm{O}(7)-\mathrm{Nb}(3)-\mathrm{O}(7)$ (O 's at same z)	86.0.7)
$\mathrm{O}(7)-\mathrm{Nb}(3)-\mathrm{O}(7)$ [O 's belonging to two $\mathrm{Nb}(1)$ octahedra which share edges]	87.6(7)
$\mathrm{O}(7)-\mathrm{Nb}(3)-\mathrm{O}(7)$ (O's at different z 's not belonging to edge-sharing octahedra)	101.3(7), 170.0(10)
$\mathrm{O}(5)-\mathrm{Si}(1)-\mathrm{O}(6)$	112.5(5)
$\mathrm{O}(6)-\mathrm{Si}(1)-\mathrm{O}(6)$	106.2(9)
$\mathrm{Si}-\mathrm{O}-\mathrm{Si}$	180

[^1] the order in which the symmetry-related coordinates of the general position for $P 6_{3} / \mathrm{mcm}$ are listed in (11).
corner-sharing MO_{6} octahedra is widespread in oxide structures. Examples include the ReO_{3} structure (7), the hexagonal tungsten bronze structure (8), and the tetragonal tungsten bronze structure (9). The last-named is of particular interest here. Infinite strings of WO_{6} octahedra are joined by a complex pattern of inter-string corner-sharing, so that a projection along the strings shows three-, four- and five-sided rings of octahedra, each ring actually corresponding to an infinite channel bounded by strings of octahedra. Large cations, e.g., K^{+}, occupy the four-
and five-sided channels, being coordinated by 12 and ($10+5$) oxygens, respectively.

In $\mathrm{Ba}_{3} \mathrm{Nb}_{6} \mathrm{Si}_{4} \mathrm{O}_{26}$ and in the regions of $\mathrm{Ba}_{6+x} \mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{47}$ where edge sharing does not occur, we have nearly identical three-sided channels, as well as five-sided channels that are similar, but have two "sides" composed of $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups instead of octahedra. Because of this substitution, $\mathrm{Ba}(1)$ of $\mathrm{Ba}_{6+x} \mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{47}$ and the barium in $\mathrm{Ba}_{3} \mathrm{Nb}_{6} \mathrm{Si}_{4} \mathrm{O}_{26}$ are coordinated by only $(10+3)$ oxygens, rather than having the $(10+5)$ coordination of $\mathrm{Ba}(2)$ and the bronze K^{+}.

Fig. 5. Arrangement of NbO_{6} octahedra and SiO_{4} tetrahedra in $\mathrm{Ba}_{6+x} \mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{47}$. Bariums are represented as in Fig. 1.

-

3.7.L

$\begin{array}{lll}25 & 1274 & -1022 \\ 29 & 1197 & 1421 \\ 35 & 1139 & -673\end{array}$
13
22
36
$1937-2$
1041
1999
$1350-1$
5.5 .1

	3697	4132
1	803	-966
2	663*	962
3	572*	-128
4	1347	-134
5	143	-43
6	79	64
	2624	-140
-	1730	1711
9	556*	0
10	2969	2856
11	539*	-194
12	722*	-362
14	2509	-2405
15	1594	1335
16	1782	185a
20	1891	1860
24	1195	-1307
26	${ }^{1335}$	1431
28	2206	2116
29	1040	-1072
35	1130	-103

0	2520	-2452
1	1193	-1002
7	1949	-1964
10	964	-789
14	1351	1436
15	1419	1455
1	1335	1309
5.7 .1		

$\begin{array}{rrr}0 & 1423 & 1319 \\ 4 & 1693 & -1866 \\ 6 & 1216 & -1023 \\ 7 & 967 & -957 \\ 10 & 1183 & 1096 \\ 14 & 1752 & -1722 \\ 15 & 1011 & 807 \\ 24 & 114 & -1336\end{array}$
$\begin{array}{cccc}0 & 1566 & 1814 & 10 \\ 1 & 597 * & 44 & 14 \\ 2 & 521 * & -18 & 15 \\ 3 & 634 * & 332 & 24 \\ 4 & 649 * & -18 & 38\end{array}$

会N
5.8 .1

0	2759	2875
6	1914	1077

$\begin{array}{rrr}6 & 1914 & 1077 \\ 14 & 1272 & -1467 \\ 16 & 1051 & 1310\end{array}$
$5.10 . \mathrm{L}$
$\begin{array}{lll}1 & 1134 & -898 \\ 4 & 1158 & -1210 \\ 6 & 1340 & -1398\end{array}$
$\begin{array}{rrr}6 \\ 22 & 1340 & -1390 \\ -1414\end{array}$
$6,6, \mathrm{~L}$

4	1210	1012
7	2351	-2266
12	1103	1004
14	1835	1825
21	1350	1660
6.7 .1		

$\begin{array}{lll}0 & 1409 & -1301 \\ 7 & 1635 & 1863\end{array}$
$\begin{array}{rrr}21 & 1132 & -1199 \\ 25 & 1139 & 629\end{array}$
6.8.6
$\begin{array}{rrr}0 & 1511 & -1589 \\ 5 & 1180 \\ 14 & 1073 & 962 \\ 25 & 1528 & -1139\end{array}$
$6.9 . \mathrm{L}$
1414641221
$6.10, \mathrm{~L}$
01212
$7,7, L^{-1274}$
$\begin{array}{rrr}72217 & 2337 \\ 81497 & 1403 \\ 14 & 1139 & 899\end{array}$
$\begin{array}{rrrr}14 & 1139 & 899 \\ 15 & 1299 & -1472\end{array}$
$1123-743$
0.8.L

8 1148-2025
${ }^{a}$ The columns are $l, 10\left|F_{o}\right|, 10 F_{c}$.

* Unobserved reflections.

The barium coordination in the present compound is shown in stereo in Fig. 4. Each barium has 10 oxygen neighbors located at the vertices of a pentagonal prism, plus 3 [for $\mathrm{Ba}(1)$] or 5 [for $\mathrm{Ba}(2)$] more oxygens located outside three or all five, respectively, of the side faces of the prism. The coordination is not regular; the $\mathrm{Ba}-\mathrm{O}$ distances range from 2.6 to $3.4 \AA$ (cf. K-O distances of 2.8 to $3.4 \AA$ in the tetragonal bronze $\mathrm{K}_{x} \mathrm{WO}_{3}$).
$\mathrm{Ba}_{6+x} \mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{47}$ differs from the bronzes, of course, in that edge sharing occurs. We may consider this compound, however, as being constructed from blocks of a bronze-like structure (essentially that of $\mathrm{Ba}_{3} \mathrm{Nb}_{6} \mathrm{Si}_{4} \mathrm{O}_{26}$), which are joined by edge sharing, much as blocks of ReO_{3}-type structure are joined by edge sharing in such compounds as $\mathrm{TiNb}_{2} \mathrm{O}_{7}$ and $\mathrm{TiNb}_{24} \mathrm{O}_{62}$ (10).

The arrangement of oxygen around niobium and silicon is shown in Fig. 2, and Table II lists interatomic distances and angles. As shown, the NbO_{6} octahedra are somewhat distorted. In the case of $\mathrm{Nb}(1)$ and $\mathrm{Nb}(3)$, this is presumably due to the necessity of fitting so many octahedra together in the edge-sharing region. The distortion, and in particular the tilt away from the vertical, of the $\mathrm{Nb}(2)$ octahedra are due primarily to the fact that the oxygens of the $\mathrm{Si}_{2} \mathrm{O}_{7}$ unit are tightly bound by the silicons, so that the length of the unit is more or less fixed at $4.5 \AA$. If the octahedra were undistorted and aligned, this would be the $\mathrm{Nb}(2)-\mathrm{O}(2)-\mathrm{Nb}(2)$ distance, corresponding to an $\mathrm{Nb}-\mathrm{O}$ distance of $2.25 \AA$. This is rather long compared to the usual $\mathrm{Nb}-\mathrm{O}$ distance of 1.9-2.1 \AA. The tilt of the octahedra brings the niobiums closer together and reduces the $\mathrm{Nb}(2)-\mathrm{O}(2)$ distance to a reasonable $1.91 \AA$. In the $\mathrm{Si}_{2} \mathrm{O}_{7}$ unit, the $\mathrm{Si}-\mathrm{O}$ distances of 1.62 and $1.63 \AA$ are normal for silicon-containing oxides, and the $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ angles show only slight deviations from the tetrahedral angle of 109.5°. The central $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ bond is constrained to be linear, as all
three atoms involved are located on a threefold symmetry axis. The linear $\mathrm{Si}_{2} \mathrm{O}_{7}$ group is rather uncommon, but it has also been found in, for instance, $\mathrm{Ba}_{3} \mathrm{Nb}_{6} \mathrm{Si}_{4} \mathrm{O}_{26}$ (and the corresponding tantalum compound), $\mathrm{Sc}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ (12), and $\mathrm{NaBa}_{3} \mathrm{Si}_{2} \mathrm{O}_{7}(\mathrm{OH})$ (13), and the evidence is convincing that it does exist in $\mathrm{Ba}_{6+x} \mathrm{Nb}_{14} \mathrm{Si}_{4} \mathrm{O}_{47}$.

Table III lists observed and calculated structure factors for the compound.

Acknowledgments

The authors are grateful to the National Science Foundation for financial assistance. Computations were carried out in the Computer Center of the University of Connecticut, which is supported in part by the grant GJ-9 of the National Science Foundation. Photographs of the figures and of Table III were prepared by the University of Connecticut Photographic Laboratory.

References

1. J. R. Shannon and L. Katz, Acta Crystallogr. Sect. B 26, 105 (1970).
2. D. M. Evans and L. Katz, J. Solid State Chem., 6, 459 (1973).
3. J. M. Stewart, F. A. Kundell, and J. C. Baldwin, Eds., "The X-ray System," Computer Science Center, Univ. of Maryland, College Park, 1970.
4. "International Tables for X-ray Crystallography," Vol. 3. Kynoch Press, Birmingham (1962).
5. P. A. Vaughan, J. H. Sturdivant, and L. J. Pauling, J. Amer. Chem. Soc. 72, 5477 (1950).
6. C. K. Johnson, ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, TN, 1965.
7. K. Meisel, Z. Anorg. Chem. 207, 121 (1932).
8. A. Magnéli, Acta Chem. Scand. 7, 315 (1953).
9. A. Magnéli, Ark. Kemi 1, 213 (1949).
10. R. S. Roth and A. D. Wadsley, Acta Crystallogr. 19, 26 (1965).
11. "International Tables for X-ray Crystallography," Vol. 1. Kynoch Press, Birmingham (1965).
12. D. W. J. Cruickshank, J. Lynton, and G. A. Barclay, Acta Crystallogr. 15, 491 (1962).
13. O. S. Filipenko, E. A. Pobedimskaja, V. I. Ponomarev, and N. V. Belov, Sou. Phys.-Dokl. 16, 703 (1972).

[^0]: ${ }^{a}$ Errors in the last digit are given in parentheses. Where no error is shown, the parameter is not independent. Anisotropic thermal vibration expressed as: $\exp \left[-1 / 4\left(a^{* 2} U_{11} h^{2}+b^{* 2} U_{22} k^{2}+c^{* 2} U_{33} l^{2}+2 a^{*} b^{*} U_{12} h k+2 a^{*} c^{*} U_{13} h l+\right.\right.$ $\left.\left.2 b^{*} c^{*} U_{23} k l\right)\right]$. Isotropic thermal vibration expressed as: $\exp \left[-8 \pi^{2} U \sin ^{2} \theta / \lambda^{2}\right]$.
 ${ }^{b}$ Population parameter, 0.076(11).
 ${ }^{c}$ All U 's have been multiplied by 100 .

[^1]: ${ }^{a}$ Errors in last digit are shown in parentheses. Superscripts on oxygens around $\mathrm{Ba}(1)$ and $\mathrm{Ba}(2)$ refer to

