The Structure of a Barium Niobium Silicon Oxide with the Probable Composition $Ba_{6+x}Nb_{14}Si_4O_{47}$ ($x \simeq 0.23$)

DOLETHA M. EVANS AND LEWIS KATZ

Department of Chemistry and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06268

Received January 3, 1973

Reaction of BaO, Nb₂O₅, and Nb in mole ratios of 2.4:1.6:1 in an evacuated silica capsule at 1250°C produces a mixture of at least two products, one of which has the probable composition $Ba_{6+x}Nb_{14}Si_4O_{47}$ ($x \simeq 0.23$). This compound has an hexagonal unit cell of dimensions $a = 9.034 \pm 0.004$ Å, $c = 27.81 \pm 0.02$ Å, probable space group $P6_3/mcm$, Z = 2. Its structure has been determined from 942 independent reflections collected by a counter technique and refined by least squares methods to a conventional R value of 0.062. The basic structure consists of strings of four NbO₆ octahedra sharing opposite corners, each string joined to the next by edge sharing of the end octahedra, so that the c axis corresponds to the length of a strand of seven corner-linked octahedra. Chains of three such strands are formed by corner sharing between the strands. The chains in turn are joined by NbO₆ octahedra and Si₂O₇ groups in which the Si-O-Si linkage is linear. Barium atoms are in sites between the chains coordinated by 13 oxygen atoms. A second site, 15 coordinated, probably has a small amount of barium as well; the fractional occupancy for barium in this site is 0.076.

Introduction

The reaction of BaO, Nb₂O₅, and Nb in the presence of SiO₂ can result in at least three different hexagonal complex oxides containing silicon. The first to be studied was Ba₃Nb₆Si₄O₂₆ (1). This structure has infinite strings of NbO_6 octahedra sharing opposite corners. These strings extend in the c direction. Each string is joined laterally to two others by corner sharing to form chains; the chains in turn are linked by corner sharing with Si₂O₇ groups and by the electrostatic attraction of Ba^{2+} ions between the chains. A second compound, $Ba_3Nb_{21-x}Si_2O_{44}$ ($x \simeq 0.2$) has a different structure based on a 7 layer stacking of close-packed O7 and BaO6 layers with niobium and silicon occupying sites between the layers (2).

The compound described here, $Ba_{6+x}Nb_{14}Si_4$ -O₄₇, has a structure related to that of Ba_3Nb_6 -Si₄O₂₆. However, it is more complex and has some points of individual interest.

Experimental Methods

BaO was prepared from BaO_2 by heating to 1000°C in vacuo for 1 hr. It was mixed with Nb₂O₅ and Nb (both obtained commercially) in a 2.4:1.6:1 mole ratio; the resulting gray powder was triturated under petroleum ether and placed in a silica capsule, which served as both container and reactant. The capsule was evacuated, sealed, and placed in a furnace at 1250°C for 1 wk. Upon removal from the furnace, the capsule was in a partially collapsed state, and on cooling it clouded and became crazed on the inside.

The reaction product consisted of black, highly reflective crystals, some embedded in the container walls, some aggregated into chunks that appeared to have been partially melted, and some loose and apparently single. The lastnamed occurred in two distinct habits: thick chunks only occasionally exhibiting flat faces, and very thin hexagonal plates, rarely complete but usually having at least one 120° angle visible.

Copyright © 1973 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain

Examination of several of the single crystals indicated that these two types of crystal represented two different compounds. The thin plates proved to be $Ba_3Nb_{21-x}Si_2O_{44}$ and the chunks $Ba_{6+x}Nb_{14}Si_4O_{47}$. A rough density of 4.9 g/cm³ was measured for the aggregated crystals (by the method of Archimedes, using water as the displacement liquid), which presumably consist mainly of the latter compound. This value is probably low because of trapped air in the aggregates.

A single chunky crystal was selected for structure determination and ground to a sphere of 0.14 mm diameter. Laue and precession X-ray photographs revealed a hexagonal lattice, Laue group 6/mmm, with *hhl* reflections present only for l = 2n. The probable space group is thus one of $P6_3cm$, P6c2, and $P6_3/mcm$. Photographic measurements gave a = 9.00 Å and c = 27.67 Å.

Data for the structure solution were collected on a Picker Nuclear computer-controlled singlecrystal diffractometer, using graphite-monochromatized Mo radiation and a scintillation counter detector, and operated in the θ -2 θ scan mode. The base scan width was $2.5-2.8^{\circ}$ in 2θ , with dispersion factor of 0.692. Background was counted for 20 sec on each side of the peak, and three standard reflections were measured every 40 reflections. In all, three sets of data were collected. Due to errors in interpreting the photographic data, the first collection was based on an assumed c value half the true one and hence missed half the reflections. The data produced were not used in the structure determination, although the final cell parameters, $a = 9.034 \pm 0.004$ Å and c = 27.81 ± 0.02 Å (= $2x(13.906 \pm 0.009$ Å), were determined at this time by least squares refinement on the diffractometer angles of 12 reflections.

The second collection produced usable data, but instrument instabilities resulted in sizable variations in the standards with time. Dividing the data into a number of groups and scaling each group to bring standards into agreement gave standard deviations of the standards of 1.6, 2.6, and 5.1%. However, the data were still not of very good quality, and when the conventional R value would go no lower than 0.124 for the final refined structure, a third set of data was collected. It was later discovered that part of the refinement problem arose because we were attempting to refine a nearly centrosymmetric structure.

The third data set included all possible reflections with $2\theta \le 25^\circ$, and those within the

range $0 \le h \le 9$, $-3 \le k \le 9$, and $-3 \le l \le 33$ for $25^{\circ} < 2\theta \le 50^{\circ}$. The three standards had standard deviations of 1.4, 2.2, and 5.4%, with no scaling necessary. The 3329 reflections collected were corrected for background and those related by symmetry were averaged, reducing the data set to 670 reflections, of which 421 had intensities greater than three times the standard deviation of the background and were labeled observed. In the table of structure factors, the number listed in the column of observed F's for unobserved reflections is determined from $I_{obs} + 2\sigma(I_{obs})$.

The data set used for the final structure determination included all the reflections from the third data collection plus 242 reflections of raw intensity greater than 100 and $20 > 50^{\circ}$ from the second data collection. (The intensity restriction was imposed because of the pronounced inverse correlation between magnitude and R factor for the second-set reflections.) Lorentz and polarization corrections and a spherical absorption correction, with $\mu r = 0.76$, were applied by the X-ray system program package (3), which was also used in subsequent calculations of Fourier maps, least squares refinements, and so forth.

Structure Determination and Refinement

The hk0 reflections of the compound under study are very similar to those of Ba₃Nb₆Si₄O₂₆, indicating a resemblance between the projections along c for the two compounds. Ba atoms were therefore placed at 0.59, 0, z positions; Nb at 0.24, 0, z positions and Si at 1/3, 2/3, z positions in the present compound to correspond to Ba₃Nb₆-Si₄O₂₆. Assuming a barium at 0.59, 0, 0, a Patterson map indicated possible niobium z values of 0.072, 0.211, and 0.350. The four-atom model thus arrived at was used as the starting point for a structure solution by difference Fourier methods. $P6_3cm$ was chosen as the trial space group.

The niobium position and population parameters and the barium x-parameter were refined and a ΔF map was calculated. This was then used to place further atoms and the cycle repeated, with isotropic thermal parameters also being refined on later iterations. After a few such cycles, R was down to the 10% range and the model was making chemical sense. At this point the indicated chemical formula was Ba₆Nb₁₄-Si₄O₅₀, with Z = 2. Anisotropic thermal parameters were introduced for barium and niobium and all possible parameters refined. This process reduced the Rfactor by a few percent, but the parameters would not converge. Moreover, the thermal parameters for one niobium and several oxygens became nonpositive definite. A weighting function $w = 1/\sigma_F^2$ was introduced, with

$$\sigma_F = \frac{1}{(n)^{1/2}} \frac{1}{2(\text{Lp})^{1/2}} \\ \times [\{N_T + \text{BG} + [0.02(N_T - \text{BG})]^2\} / \\ [N_T - \text{BG}]^{1/2}$$

for observed reflections and

$$\sigma_F' = \frac{1}{(n)^{1/2}} \frac{1}{2(Lp)^{1/2}} (BG)^{1/2}$$

for unobserved reflections, where:

- *n* number of reflections averaged
- Lp Lorentz and polarization corrections
- N_T total counts measured on the scan through the peak
- **BG** (background counts accumulated in 40 sec) \times (scan time/40).

This produced a weighted R somewhat lower than the conventional R from the unweighted refinement, but did not help the convergence problem.

A careful examination of the model revealed that it had become nearly centrosymmetric. A statistical analysis of the magnitudes of the normalized observed structure factors indicated that a true center of symmetry was present. Accordingly, the atomic z-coordinates were altered so as to place the center at the origin and the probable space group became $P6_3/mcm$ (No. 193). There was no further difficulty in obtaining convergence.

Weighted refinement, however, still resulted in nonpositive definite thermal parameters for one niobium. Hence, the final refinement was done with unit weights. Neutral atom scattering factors with dispersion corrections included, from (4), were used throughout.

The formula $Ba_6Nb_{14}Si_4O_{50}$ corresponds to a cell in which one oxygen occupies a position logically more suited to a barium; it is surrounded by 15 oxygens, with no niobium or silicon within bonding range. A corresponding site in $Ba_3Nb_6Si_4O_{26}$ is unoccupied by any species.

TABLE I

Atom: Position:	Ba(1) 12k	Ba(2) ^b 6g	Nb(1) 12k	Nb(2) 12k	Nb(3) 4d	Si(1) 8h	
x	0.5932(2)	0.6117(39)	0.2383(5)	0.2371(3)	1/3	1/3	
y	0	0	0	0	2/3	2/3	
Z	0.1076(1)	1/4	0.0434(1)	0.1833(1)	Ó	0.1918(3)	
U°		0.592(711)				0.695(176)	
U_{1}	1.103(64)		2.401(162)	0.253(83)	0.427		
U_{22}	1.132		0.378	0.273	0.427		
U_{33}	1.012(59)		0.472(91)	0.452(76)	1.429(184)		
U_{12}	0.566(43)		0.189(72)	0.137(57)	0.213(62)		
$U_{13}^{}$	0.159(57)		0.327(98)	-0.098(76)	0		
U_{23}	0		0	0	0		
Atom:	O(1)	O(2)	O(3)	O(4)	O(5)	O(6)	O (7)
Position:	12k	6 <i>g</i>	12k	12k	4 <i>c</i>	241	241
x	0.2203(26)	0.2860(44)	0.2060(38)	0.1773(24)	1/3	0.1801(20)	0.1729(22)
у	0	0	0	0	2/3	0.4898(22)	0.4841(23)
z	0.1094(7)	1/4	0.5326(9)	0.6850(7)	1/4	0.1694(4)	0.4562(5)
U	1.017(358)	1.384(633)	2.213(572)	0.631(369)	1.501(791)	0.752(254)	0.977(295)

Atomic Parameters for Ba_{6+x}Nb₁₄Si₄O₄₇ Space Group P6₃/mcm (No. 193)^a

^a Errors in the last digit are given in parentheses. Where no error is shown, the parameter is not independent. Anisotropic thermal vibration expressed as: $\exp[-1/4(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^*b^*U_{12}hk + 2a^*c^*U_{13}hl + 2b^*c^*U_{23}kl)]$. Isotropic thermal vibration expressed as: $\exp[-8\pi^2 U\sin^2\theta/\lambda^2]$.

^b Population parameter, 0.076(11).

^c All U's have been multiplied by 100.

In this case, however, leaving the site empty results in a peak on a ΔF map, of approximately the magnitude of a peak produced by omission of one of the normal oxygens. Fully occupying the site with oxygen results in a very large isotropic thermal parameter for the oxygen; allowing both population and thermal parameters to vary results in a low occupancy factor and a negative temperature factor. Placing a barium with a low occupancy factor in the site and refining, however, leads to simultaneous convergence of population and thermal parameters. Accordingly, the probable occupant of the site is a barium of low population parameter, and the compound formula becomes $Ba_{6+x}Nb_{14}Si_4O_{47}$, with $x \simeq 0.23$. The average niobium oxidation state is thus +4.68, presumably corresponding to a mixture of Nb^{IV} and Nb^V. Mixed oxidation states are known for other niobium compounds (5), and in this case account neatly for the dark color of the compound. The theoretical density is 5.09 g/cm³, compared to the measured (presumably low) value of 4.9 g/cm³. A final difference map showed no peak of more than 1/10 the height of that produced by omission of an oxygen.

The final R factor is 0.062 overall, and 0.045 for reflections from the third data collection (presumably the more accurate reflections). The maximum shift/error ratio in the final cycle of refinement was 0.011. The final parameters are given in Table I, and the unit cell contents are shown in stereo in Fig. 1. This and subsequent

FIG. 1. Stereo view of the unit cell of $Ba_{6+x}Nb_{14}Si_4O_{47}$. Ba(1) is shown as striped circles, Ba(2) as stippled circles, Nb as small open circles, Si as small black circles, and O as large open circles.

FIG. 2. Niobium and silicon coordination in Ba_{6+x} -Nb₁₄Si₄O₄₇.

drawings were produced by the program ORTEP (6), using a computer-controlled plotter.

Discussion

The basic structural unit in $Ba_{6+x}Nb_{14}Si_4O_{47}$ is a string of four NbO₆ octahedra joined end to end. These strings are joined laterally in groups of three by further corner sharing. Figure 5 shows four such groups and the connections among them. It may be seen that each group of three strings is joined to the next group along the c axis by edge sharing of the end octahedra. Thus there are essentially continuous triple chains of NbO₆ octahedra extending along the c axis. Connections perpendicular to c between different triple chains are provided by Si₂O₇ groups and single NbO₆ octahedra. Four of the former and two of the latter appear in Fig. 5. Each Si_2O_7 group joins three separate triple chains by sharing corners with the second and third octahedra of one string in each group. The single NbO₆ octahedra occur at the ends of the triple chains, so that each actually shares corners with octahedra in six different four-octahedron strings. This is clearly shown in Fig. 3, which shows a view along the c-axis of a slice of the unit cell centered around $z = \frac{1}{2}$, a region in which edge sharing occurs. The end octahedra of triple chains appear around the origins; single NbO₆ octahedra are located at 1/3, 2/3 and 2/3, 1/3.

In the $Ba_3Nb_6Si_4O_{26}$ structure (1), similar triple chains of niobium-oxygen octahedra appear, but in that case there is no edge sharing; individual chains are infinite in length instead of

FIG. 3. View along c axis of a section from z = 0.45 to z = 0.60 of the Ba_{6+x}Nb₁₄Si₄O₄₇ cell, showing NbO₆ groups as solid octahedra and Ba as striped circles.

four octahedra long. The triple chains are joined by linear Si_2O_7 groups, as in the present compound, but there is no niobium between chains.

FIG. 4. Stereo view of the barium coordination in $Ba_{6+x}Nb_{14}Si_4O_{47}$. Ba(1) is shown as an ellipsoid and Ba(2) as a circle.

The unit cell of $Ba_3Nb_6Si_4O_{26}$ is two octahedra high; the $Ba_{6+x}Nb_{14}Si_4O_{47}$ cell may be constructed by stacking up four $Ba_3Nb_6Si_4O_{26}$ cells, with the top two rotated 60° relative to the bottom two. The second and third cells are then overlapped so that edge sharing of NbO₆ octahedra is produced, the pairs of silicons brought together by this process are replaced by single niobiums, and Ba(2), which occupies a site vacant in $Ba_3Nb_6Si_4O_{26}$, is introduced to complete the structure.

So $Ba_3Nb_6Si_4O_{26}$ is a fairly close relative to $Ba_{6+x}Nb_{14}Si_4O_{47}$. It may also be instructive to consider some more distantly related compounds. Except for the Si_2O_7 groups, the framework of the $Ba_{6+x}Nb_{14}Si_4O_{47}$ structure is composed of NbO₆ octahedra sharing corners, and in some places edges. The occurrence of a framework of

BARIUM NIOBIUM SILICON OXIDE

TABLE II

Interatomic Distances and Angles in $Ba_{6+x}Nb_{14}Si_4O_{47}{}^a$

Distances (Å)	
Ba(1)-O(1) ¹	3.37(2)
$Ba(1) - O(1)^2$	3.19(1)
Ba(1) - O(3)	2.76(3)
Ba(1)-O(4)	2.99(2)
$Ba(1) - O(6)^2$	3.04(1)
$Ba(1) - O(6)^3$	2.83(2)
$Ba(1) - O(7)^2$	3.09(1)
$Ba(1) - O(7)^3$	2.84(2)
$Ba(2) - O(2)^{1}$	2.94(5)
$Ba(2) - O(2)^2$	3.15(3)
$B_{a}(2) - O(4)$	2.63(3)
$B_{a}(2) - O(5)$	2.80(1)
$B_{a}(2) = O(6)^{2}$	3.34(1)
$B_{a}(2) = O(6)^{3}$	3.27(3)
Nb(1) = O(1)	1.84(2)
Nb(1) - O(3) (atoms at different z values)	2 13(2)
Nb(1) $-\Omega(3)$ (atoms at about same z)	2.13(2) 2.04(4)
Nb(1)- $\Omega(7)$	1.98(2)
Nb(2) = O(1)	2.06(2)
Nb(2) = O(2)	1.91(1)
Nb(2) = O(4)	1.93(3)
Nb(2) - O(6)	2.07(2)
Nb(3) = O(7)	1.98(2)
Si(1) = O(5)	1.50(2)
Si(1) = O(5)	1.62(1)
5.(1) 0(0)	1.00(2)
Angles (°)	
O(1)-Nb(1)-O(3) [O(3) and Nb at about same z]	95.4(8)
O(1)-Nb(1)-O(3) [O(3) and Nb at different z's]	167.1(12)
O(1)-Nb(1)-O(7)	93.3(7)
O(3)-Nb(1)-O(3) (O's at same z)	104.0(12)
O(3)-Nb(1)-O(3) (O's at different z's)	76.9(9)
O(3)-Nb(1)-O(7) [O(3) and Nb at about same z]	84.1(10), 167.5(10)
O(3)-Nb(1)-O(7) [O(3) and Nb at different z's]	96.1(8)
O(7)-Nb(1)-O(7)	86.5(7)
O(1)-Nb(2)-O(2)	170.8(13)
O(1)-Nb(2)-O(4)	88.4(7)
O(1)-Nb(2)-O(6)	82.3(6)
O(2)-Nb(2)-O(4)	97.9(10)
O(2)-Nb(2)-O(6)	91.0(9)
O(4)–Nb(2)–O(4)	91.9(8)
O(4)-Nb(2)-O(6)	90.5(8), 170.4(7)
O(6)-Nb(2)-O(6)	85.7(6)
O(7)-Nb(3)-O(7) (O's at same z)	86.0(7)
O(7)-Nb(3)-O(7) [O's belonging to two Nb(1) octahedra which share edges]	87.6(7)
O(7)-Nb(3)-O(7) (O's at different z's not belonging to edge-sharing octahedra)	101.3(7), 170.0(10)
O(5)-Si(1)-O(6)	112.5(5)
O(6)-Si(1)-O(6)	106.2(9)
Si-O-Si	180

^{*a*} Errors in last digit are shown in parentheses. Superscripts on oxygens around Ba(1) and Ba(2) refer to the order in which the symmetry-related coordinates of the general position for $P6_3/mcm$ are listed in (11).

corner-sharing MO_6 octahedra is widespread in oxide structures. Examples include the ReO₃ structure (7), the hexagonal tungsten bronze structure (8), and the tetragonal tungsten bronze structure (9). The last-named is of particular interest here. Infinite strings of WO₆ octahedra are joined by a complex pattern of inter-string corner-sharing, so that a projection along the strings shows three-, four- and five-sided rings of octahedra, each ring actually corresponding to an infinite channel bounded by strings of octahedra. Large cations, e.g., K⁺, occupy the fourand five-sided channels, being coordinated by 12 and (10 + 5) oxygens, respectively.

In $Ba_3Nb_6Si_4O_{26}$ and in the regions of $Ba_{6+x}Nb_{14}Si_4O_{47}$ where edge sharing does not occur, we have nearly identical three-sided channels, as well as five-sided channels that are similar, but have two "sides" composed of Si_2O_7 groups instead of octahedra. Because of this substitution, Ba(1) of $Ba_{6+x}Nb_{14}Si_4O_{47}$ and the barium in $Ba_3Nb_6Si_4O_{26}$ are coordinated by only (10 + 3) oxygens, rather than having the (10 + 5) coordination of Ba(2) and the bronze K⁺.

FIG. 5. Arrangement of NbO₆ octahedra and SiO₄ tetrahedra in $Ba_{6+x}Nb_{14}Si_4O_{47}$. Bariums are represented as in Fig. 1.

TABLE III

Observed and Calculated Structure Factors for $Ba_{6+x}Nb_{14}Si_4O_{47}{}^{\alpha}$

	0,0.L	0.5,1	5 1991 -2042	1.4.L	8 5124 -210	10 1263 1286	17 1507 1530	3.4.1	25 1274 -1022	8 1937 -2039
= 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	2 3550 2990 4 1825 -1876	0 6790 7129 2 667 825	7 7624 -7901 8 4020 140	0 4611 4606 1 465# -122	9 638* 281 10 754 627 11 1216 -1194	11 507* 105 12 557* -295 13 766 661	18 591* -546 19 557* -153 20 809* -794	0 480 -350	29 1197 1421 35 1139 -473	13 1041 -922 22 1599 1702
	6 2727 2475	4 3703 -3700 6 1996 -1881	9 428+ -469 10 397+ 74	2 690 674 3 6120 600	12 729+ 677 13 8+1 -523	14 972 -918 15 2957 -2901	22 1312 -1234 25 1037 1113	2 513* -142 3 1136 1203	3,9,L	36 1338 -1489
	12 2538 -2661 1412452 13250	10 2669 2784	11 2936 2830	4 2273 2226 5 477 * -69	14 641# 424 15 1699 1675	16 1452 -1475 17 566# -190	28 1209 -1126 29 1674 -1706	4 643* -386 5 523* -118	0 1755 1712	0 3697 4232
	16 2841 2566 18 4176 4221	14 6783 -6628 16 492* -179	14 4252 4032 15 1912 1803	7 596 520 B 2258 -2239	17 1237 1215	19 976 -932 20 577# 350	43 1154 983	7 1672 -1583	16 1160 806	1 803 -966 2 863= 962
$ \begin{array}{ c c c c c } \hline \\ \hline $	20 4169 4044 22 3546 3372	18 2244 2173 20 1369 1338	16 1315 1303 17 1274 -1288	9 545+ -222 10 607+ 323	19 599+ 28 22 972 983	21 1655 -1726 22 2536 -2547	2.7.L	9 587= -256 10 899 -813	4,4,L	3 572* -328 4 1347 -1343
	24 1297 -1295 26 3676 3684	22 639+ -247 24 2752 -2888	18 1101 -1110 19 1865 1825	11 585° -170 12 505° -67	29 1511 -1330	23 1227 1165 24 1196 -1278	D 1528 -1486 1 769 773	11 1226 1283 12 609* -362	1 1096 -1468	5 743* -436 6 798* -648 7 3624 -1408
	30 1889 -1800 32 1929 -2116	28 3633 3565 30 1331 +1319	21 4406 4285	13 533* -286 14 1487 -1338 15 607* 127	1.8.6	25 572* 151 26 633* -556 27 660 843	2 600+ -108 3 691+ -428 4 976 -1010	13 500 576 14 539 -362	3 1562 -1896	8 1730 1711 9 556* 50
	36 3463 -3210 38 2191 2178	32 1729 -1847 34 1508 -1718	23 1124 -974 24 1407 1319	16 2106 1973 17 720 715	1 1683 1651	29 1888 1983	5 626+ 270 6 1031 -991	16 615* -493 17 623 -840	5 818 704 6 3188 3084	10 2949 2856
	40 1290 -1267 42 1177 -987	38 1693 1875 40 1125 -1314	25 2323 -2289 26 550* 206	18 533* -461 19 484* -103	3 1707 1764 4 618 779	32 1486 -1445 36 1090 1121	7 2811 2829 8 911 849	18 567* 41 19 537* 36	7 3174 3102 8 3240 -3124	12 722# -362
	46 1659 1844	52 1173 -1461	27 2020 -1937 28 1508 -1501 29 1365 -1115	20 768 671 21 503* -498 22 3037 2904	5 708 -726 6 1231 1280 7 1468 -1630	37 1349 -1233 2.44L	9 626* -35* 10 642* 41 11 748* -461	20 535# -174 21 1068 1007 22 523# -62	10 770 -505	16 1782 1858 20 1691 1868
	52 1169 -1559	0+6+L	30 1114 - 1123 31 1205 1246	23 566* 178 24 748 730	8 2426 -2414 9 6414 -721	0 4275 -4288	12 599* 99	23 587* 308 24 521* 16	12 563 -105 13 1489 -1458	24 1195 -1307 26 1335 1431
	0+1+L	0 1007 1027 2 572* 262	32 1602 1659 33 1198 -1095	25 563* -29 26 1650 1586	10 1695 -1705 11 1774 1863	1 943 -962 2 576= -544	14 591* 499 15 1064 -1033	25 961 -950 29 1246 1025	14 1078 -944 15 1414 1298	28 2206 2176 29 1040 -1072
1 1	2 366+ -300 4 792 870	4 1822 1940 6 1966 1908 8 6984 -799	34 895 988	27 602* 195 28 826 762	12 600 -399	3 1816 -1889 4 589 649 5 4108 398	16 930 -1002 21 1788 -1792 22 1273 -1244	3.5.L	17 981 1171 18 1201 -1249	36 1102 1305
1 1	6 1104 1018 8 3305 -3118	10 5184 -242	39 1417 3462 41 1549 1591	1.5.L	17 1216 -1332 21 1260 1373	6 618# -81 7 3751 3724	2+8+L	0 2263 2269 1 622* -439	19 718= -479 20 640= 213	5,6,L
	10 1635 -1583 12 1495 -1402	14 1177 1170 16 903 878	1+2+L	0 2612 -2636 1 1827 -1766	22 1539 1755 25 1744 -1583	8 535* -186 9 565* 106	0 717 689	2 546* 92 3 581* 116	21 2222 -2167 22 4005 3906	0 2520 -2452
1 1	14 1814 -1668 16 464+ 240	16 628* -277 20 525* 346	0 4430 -4619	2 5984 -457 3 5324 -147	27 1166 -917 29 1084 1065	10 1685 -1696	1 678° 539 2 642° 401	4 1279 -1355 5 514• 120	25 2076 2088	10 964 -789
A Diract C Diract C Diract Diract <t< td=""><td>20 1061 -1028 22 1983 1886</td><td>24 1410 1473</td><td>2 489* -470</td><td>5 872 -866 6 570= -106</td><td>39 1204 1141</td><td>13 1362 -1225 14 2650 2509</td><td>4 714+ -335 5 584+ -151</td><td>7 816 -896 8 3794 -463</td><td>27 1302 1199 30 1410 -1495</td><td>15 1419 1455 21 1335 1309</td></t<>	20 1061 -1028 22 1983 1886	24 1410 1473	2 489* -470	5 872 -866 6 570= -106	39 1204 1141	13 1362 -1225 14 2650 2509	4 714+ -335 5 584+ -151	7 816 -896 8 3794 -463	27 1302 1199 30 1410 -1495	15 1419 1455 21 1335 1309
20 20<	24 512* 58 26 513* 210	0.7.1	4 841 -798 5 423* -386	7 3150 -3115 8 5514 -292	1.9.L	15 837 674 16 949 -906	7 1048 972 8 1877 1946	9 554* 322 10 564* 63	31 988 -741 35 1235 1227	5.7.L
juic juic <thjuic< th=""> juic juic <thj< td=""><td>28 532* 141 30 1401 -1413</td><td>0 1535 1815 2 655* 313</td><td>6 1219 -1203 7 408* -319</td><td>9 541* -106 10 909 -808</td><td>0 1016 -846 1 1033 -870</td><td>17 1327 1371 18 1082 -1140</td><td>10 1786 1835 20 1022 1115</td><td>11 534* -35 12 874 -807</td><td>39 1351 -1424</td><td>0 1423 1319</td></thj<></thjuic<>	28 532* 141 30 1401 -1413	0 1535 1815 2 655* 313	6 1219 -1203 7 408* -319	9 541* -106 10 909 -808	0 1016 -846 1 1033 -870	17 1327 1371 18 1082 -1140	10 1786 1835 20 1022 1115	11 534* -35 12 874 -807	39 1351 -1424	0 1423 1319
0 0 10 100 100 12 100 12 100 12 100	36 1840 -1708	6 2099 -2074 8 1250 1197	9 1054 959 10 1390 -1231	12 5794 -110	29 1280 -960	20 1372 -1297 21 2547 -2517	2+9+1	14 2558 -2516	4.3,L	6 1216 -1023 7 967 -957
$ \begin{array}{c} 0 \ 126 \ -1215 \ 1 \ 201 \ -1215 \ 1 \ 201 \ -1215 \ 1 \ 201 \ -1215 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ $	0+2+L	10 1006 1098 12 830 -839	11 2452 -2497 12 539* 530	14 1254 1159 15 2225 2187	1+10+L	22 7794 -525 23 5744 160	0 2553 -2487	16 532* -314 17 577* -240	0 1566 1814 1 597# 44	10 1183 1086 14 1752 -1722
1 1	0 1320 -1235 2 473* 161	14 2351 -2337 16 971 -723	13 1878 -1734 14 2309 2176	16 663* -550 17 570* 172	1 1138 -1135 4 1103 1119	24 775 763 25 1511 1561	1 1758 -1756	16 961 992 19 553+ 92	2 521* -18 3 634* 332	15 1011 807 24 1114 -1336 38 1144 824
$ \begin{array}{c} 1 & 277 & 2160 & 24 & 122 & -1460 & 16 & 217 & -166 & 21 & 2160 & -116 & 2160 $	6 4015 -3835	20 911 969	16 1601 -1487	19 888 880	14 1531 1597 15 1630 1581	27 1186 1162 28 1720 -1659	14 1542 1548 15 1849 1976	21 717+ 569 28 1079 1076	5 613* -176 6 953 768	5.8.L
$ \begin{bmatrix} 1 & 930 & -860 & 32 \\ 1 & 100 & -760 & 2 \\ 1 & 100 & -760 & 2 \\ 1 & 100 & -760 & 2 \\ 1 & 100 & -760 & 2 \\ 1 & 100 & -760 & 2 \\ 1 & 100 & -760 & 2 \\ 1 & 100 & -760 & 2 \\ 2 & 100 & -760 & 2 \\ 2 & 100 & -760 & 2 \\ 2 & 100 & -760 & 2 \\ 2 & 100 & -760 & 2 \\ 2 & 100 & -760 & 2 \\ 2 & 100 & -760 & 2 \\ 2 & 100 & -760 & 2 \\ 2 & 100 & -760 & 2 \\ 2 & 100 & -760 & 2 \\ 2 & 100 & -770 & 2 \\ 2 &$	10 2377 2350 12 560* -411	24 1328 -1380 28 1202 1319	18 511* 68 19 864 * 789	20 1130 -1096 21 1607 1631 22 610+ -312	21 1773 1599 23 1158 -835	31 1040 -963 35 1481 1348	25 1252 992 28 1192 -1106	3.6.L	7 662* -359 8 2193 -2155	0 2759 2875
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14 930 -880 16 1800 -1704	32 1272 -1472	20 1004 -861 21 566° -73	23 743 -683 24 612* -50	29 1331 -1323 37 1272 939	39 1082 -993 2.4.L	29 1629 -1595 37 1174 767	0 1141 -1107	10 713# -685	14 1272 -1467
$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $	18 2057 2029 20 697 648 22 3363 -3226	D.8.L	22 1749 -1688 23 1853 -1726 24 557# 389	25 /19 -602 26 672* -501 27 883 -660	2+2+L	0 2070 2023	2+10+L	2 564* -17 3 1836 1985	12 1041 -991 13 530+ 112	5,10,L
$ \begin{array}{c} 26 & 906 & 974 & 6 & 597 & -6 & 577 & 526 & 746 \\ 37 & 370 & -710 & 5 & 576 & -710 & $	24 1983 -1977 26 6284 -584	2 671# -69 4 584# -700	25 1190 1351 26 1344 -1312	28 941 -819 39 1591 -1540	0 2310 -2277	1 1752 -1701 2 671* 65*	4 1503 -1530 6 1213 -1392	4 1608 1692 5 362* -147	14 2160 -2057 15 652* -42	1 1154 -898
24 19	28 906 874 30 753 755	6 583* 63 8 1678 -1701	27 528• 76 28 1252 -1259	1+6+L	2 407+ 106	4 1246 -1336	8 1329 1384 15 1335 1003	7 718538	17 646* -214 22 1826 1689	6 1340 -1398 22 1269 -1414
$\begin{array}{c} 0.3 \\ 0.3 \\ 0.3 \\ 22 \\ 238 \\ 26 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16$	32 1562 -1578 36 1508 1347 42 1105 -1287	12 1313 -1235	30 723 745	0 4134 -4238	4 872 750 5 4294 262	6 872 -903 7 2448 -2420	16 1289 957 21 914 757	9 670+ -562 10 568+ 275	30 1210 -1166 36 1125 -1519	6167L
$\begin{array}{c} \begin{array}{c} 2 & 82 & 1401 & 1981 \\ 2 & 591 & 641 & 1581 \\ 2 & 591 & 641 & 1581 \\ 2 & 591 & 641 & 158 \\ 2 & 591 & 641 & 168 \\ 2 & 591 & 641 & 168 \\ 2 & 591 & 641 & 168 \\ 2 & 591 & 641 & 168 \\ 2 & 591 & 641 & 168 \\ 2 & 591 & 641 & 168 \\ 2 & 591 & 641 & 168 \\ 2 & 591 & 641 & 168 \\ 2 & 591 & 641 & 168 \\ 2 & 591 & 641 & 168 \\ 2 & 591 & 641 & 168 \\ 2 & 592 & -282 \\ 2 & 692 & -282 \\ 2 & 692 & -282 \\ 2 & 692 & -282 \\ 2 & 692 & -282 \\ 2 & 692 & -282 \\ 2 & 692 & -282 \\ 2 & 692 & -282 \\ 2 & 692 & -282 \\ 2 & 692 & -822 \\ 2 & 692 & -822 \\ 2 & 692 & -822 \\ 2 & 692 & -822 \\ 2 & 692 & -822 \\ 2 & 692 & -822 \\ 2 & 692 & -822 \\ 2 & 692 & -822 \\ 2 & 692 & -822 \\ 2 & 692 & -822 \\ 2 & 692 & -822 \\ 2 & 692 & -822 \\ 2 & 692 & -82 \\ 2 & 110 & -100 \\ 2 & 110 & 100 \\ 2 & 100 & 100 \\$	0.3.L	16 781* 636 22 1384 1486	37 1824 1664 43 1930 1878	2 618* -562 3 1064 1056	6 418* -129 7 471* -168	8 2936 2920 9 650 622	22 1645 -1624	11 1735 1825 12 1114 1020	4+6+6	4 1210 1012
$ \begin{array}{c} 2 \ 591 \ 641 \ 6412 \$	0 4577 5092	28 1401 1581 30 1655 -1831	1,3,L	4 6264 519 5 7544 -782	9 4614 82 10 2623 2695	10 5088 5126 11 616* -408 12 788 768	0 2156 -2210	14 2332 2235 15 2621 -2632	0 1229 -1246 1 592* -24	12 1103 1004
$ \begin{array}{c} \begin{array}{c} 9 \ 200^{-} \ 7.6 \ 2 \ 7.6 \$	2 591 641 4 390* -130	44 1312 1433	0 1711 -1643	6 349* -414 7 4612 -4662	11 1215 -1160 12 1746 1644	13 561* -445 14 544* -240	1 3988 4149 2 476* -102	16 1070 920 17 1459 -1517	2 540+ -92 3 684+ -644	21 1358 1640
$ \begin{array}{c} 12 & 695 & 283 \\ 12 & 952 & 283 \\ 14 & 952 & 163 \\ 14 & 952 & 163 \\ 15 & 16 & 16 \\ 15 & 15 & 2 & 61 \\ 15 & 16 & 16 & 106 \\ 15 & 16 & 106 \\ 22 & 406 \\ 16 & 106 \\ 22 & 406 \\ 16 & 106 \\ 22 & 406 \\ 16 & 106 \\ 22 & 406 \\ 16 & 106 \\ 22 & 406 \\ 16 & 106 \\ 22 & 406 \\ 16 & 106 \\ 22 & 406 \\ 16 & 106 \\ 22 & 406 \\ 16 & 106 \\ 22 & 406 \\ 16 & 106 \\ 22 & 406 \\ 16 & 106 \\ 22 & 406 \\ 16 & 106 \\ 22 & 406 \\ 16 & 106 \\ 22 & 406 \\ 22 & 106 \\ 16 & 106 \\ 16 & 106 \\ $	8 2288 2069 10 3260 3089	0,9,L	2 486* -486 3 3026 3137	9 659* 431 10 1271 -1319	13 1437 -1277 14 3397 3200	15 2375 2254 16 548* 306	3 2789 2879 4 1648 1398	18 911 -833 21 929 785	4 679* 162 5 671* 81	6,7,L
16 2061 164.1 4 800* 900 6 100 100 10 9 201*00 100 10 6 201*00 100 6 201*00 10 6 201*00 201*00 10 6 201*00 201*00 10 8 0 87.4 10 657 -76 2 11 615 -600 6 6.8.4 10 10 6 0 7.7.4 10 657 -76 2 11 615 -600 6.8.4 10 6.8.4 10 6.8.4 10 6.8.4 10 6.8.4 10 6.8.4 10 6.8.4 10 6.8.4 10 6.8.4 10 10 6.9.2 2 110 6.9.2 10 10 6.9.4 10 10 6.8.4 10<	12 495+ 283 14 1932 -1913	0 3331 3374 2 614# 361	4 1508 1517 5 670 - 699	11 989 997 12 977- 474	15 2654 2440 16 1040 940 17 2588 2565	17 567 -175 18 1919 1988 19 852 762	6 634• 345 7 1333 1243	29 2151 1990 32 1170 1299	7 925 962 8 609° -227	7 1635 1663
22 2008 23 2008 23 2008 23 1760 10 205 21 768 -711 10 875 815 11 615 -609 668L 26 2008 250 15 1469 -1568 10 2006 -721 10 1615 -620 21 1570 11 224 2155 0 972 -920 44 77L 0 1511 -158 10 1615 -600 22 1009 -1072 24 1078 -988 12 1799 12 007 2109 44 77L 0 1511 -158 980 -168 10 177 24 0078 -1078 13 1200 11 6415 -600 11 648 1009 11 1 1258 21 009 -1072 24 1078 -1789 13 120 21 079 2109 44 77L 0 1511 -1589 568 <t< td=""><td>16 2061 1841 16 1396 1352</td><td>4 870* 950 6 1726 1688 8 1538 -1656</td><td>6 1106 1083 7 3071 -3047 8 2723 -2625</td><td>14 2623 2598</td><td>18 488* 109 19 581* -282</td><td>20 1870 1801 21 1509 1454</td><td>8 2075 2041 9 967 -980</td><td>3.7.L</td><td>9 602* -76 10 867 -1112</td><td>25 1139 623</td></t<>	16 2061 1841 16 1396 1352	4 870* 950 6 1726 1688 8 1538 -1656	6 1106 1083 7 3071 -3047 8 2723 -2625	14 2623 2598	18 488* 109 19 581* -282	20 1870 1801 21 1509 1454	8 2075 2041 9 967 -980	3.7.L	9 602* -76 10 867 -1112	25 1139 623
26 1350 1444 16 1452 1355 11 2637 2553 18 100 5-1070 22 100 - 1027 24 105 - 1027 24 105 - 1027 24 105 - 1027 24 105 - 1027 24 105 - 1027 24 105 - 1027 24 105 - 1027 24 105 - 1027 24 105 - 1027 24 105 - 1027 24 105 - 1027 24 105 - 1027 24 105 - 1027 24 105 - 1027 24 105 - 1027 24 105 - 1027 24 105 - 1027 25 105 - 172 10 173 915 3 106 - 730 15 107 105 31 107 - 1037 95 103 95 31 067 - 950 10 103 915 3 1067 - 950 10 103 915 3 1067 - 950 10 103 915 3 1067 - 950 10 103 915 3 1067 - 950 10 103 915 3 1067 - 950 10 103 915 3 1067 - 950 10 103 915 110 92 4 1050 9111 25 128 - 1139 4 1050 9111 92 92 128 10 92 - 915 3 1017 127 17 117 1272 17 2176 - 2099 6 2233 - 2145 1 921 806 6 944 1 972 - 738 8 2253 2156 1 98 92 1066 6 944 1 972 - 738 8 2253 2156 1 98 92 128 1 98 92 128 1 98 92 128 1 98 92 128 1 98 92 128 1 98 92 128 1 98 92 128 1 98 92 128 1 98 92 128 1 98 92 128 1 98 92 128 1 98 92 128 1 98 92 128 1 98 92 128	22 496* 79 24 902 -859	10 973 919 14 1469 -1548	9 472+ -354 10 2806 -2741	16 830 -831 17 1049 -1117	20 1108 1009 21 619* -620	22 1768 -1719 23 1337 -1271	10 875 815	0 972 -939	11 615 -409	6+8+L
30 547* -94 26 1411 1420 13 2237 2173 20 1137 -1065 23 561 136 146 146 146 136 <t< td=""><td>26 1550 1464 28 1840 1889</td><td>16 1432 1555 22 2027 2272</td><td>11 2637 2553 12 518= -452</td><td>18 1005 -1079 19 1231 1258</td><td>22 1009 -1027 23 496* -196 26 504* -260</td><td>28 1078 -988 28 1053 1076 29 1936 -1782</td><td>13 1920 1797 14 3427 3318</td><td>2 583* 151 3 600* 353</td><td>3 1067 -950</td><td>3 1196 962 14 1073 915</td></t<>	26 1550 1464 28 1840 1889	16 1432 1555 22 2027 2272	11 2637 2553 12 518= -452	18 1005 -1079 19 1231 1258	22 1009 -1027 23 496* -196 26 504* -260	28 1078 -988 28 1053 1076 29 1936 -1782	13 1920 1797 14 3427 3318	2 583* 151 3 600* 353	3 1067 -950	3 1196 962 14 1073 915
44 1155 1000 15 1977 15 1977 15 1977 17 </td <td>30 547* -94 36 1103 986</td> <td>26 1411 1420 28 1376 1197</td> <td>13 2237 2173</td> <td>20 1157 -1065 21 3075 3107</td> <td>25 591+ 401 26 492+ 315</td> <td>30 1183 1349 36 1816 2060</td> <td>15 4780 -4716 16 1042 896</td> <td>4 1601 -1628 5 564* 340</td> <td>4 1509 1511 6 1234 1098</td> <td>25 1528 -1139</td>	30 547* -94 36 1103 986	26 1411 1420 28 1376 1197	13 2237 2173	20 1157 -1065 21 3075 3107	25 591+ 401 26 492+ 315	30 1183 1349 36 1816 2060	15 4780 -4716 16 1042 896	4 1601 -1628 5 564* 340	4 1509 1511 6 1234 1098	25 1528 -1139
0 3732 0036 0.0101 161 713 - 155. 25 1055 - 1000 20 1061 - 1247 7 20 164 - 1407 7 20 161 - 1247 7 10 723 - 738 8 2/235 2/256 14 963 1141 147 1565 1277 11 716 - 1247 70 1247 1356 - 1247 20 1247 1315 2 4396 271 6 1365 - 1563 20 1017 - 1297 28 1652 - 1644 31 1505 - 1580 0 9465 9-3467 21 577 - 424 13 912 655 51 1165 - 715 61 10 - L 67 86 9 - 163 225 - 226 11 105 - 1257 20 1643 51 1011 1122 33 1000 0 95 2 6259 - 7163 24 1050 - 1054 - 5164 - 4064 0 1727 - 1127 1274 6 110 - L 7 85 - 217 14 (200 2 251 2 21 702 1643 51 1011 1122 23 1010 0 0 95 2 625 - 1354 24 1053 24 11953 - 1624 0 1429 1503 77 - 172 - 1274 151 101 - 1276 13 24 1100 - 1643 104 - 1564 104 104 104 104 104 104 104 104 104 10	0,4,L	44 1155 1040	15 1990 -1955 16 521+ -72 17 2448 -2485	23 1411 -1350 25 906 -876	27 556* 193 28 677 -452	37 1117 1272	17 2176 -2099 18 612* -378	6 2233 -2143 7 3205 3159	7 1921 1606 11 982 -810	6.9.L
4 778 824 4 1788 718 824 4 1788 719 824 4 1788 719 728 728 7282 7280 728 7282 7280 728 7282 7280 7282 7282 7280 7282 7280 7282 7280 7282 7280 7282 7280 7282 7280 7282 7280 7282 7280 7282 7280 7282 7280 7282 7280 7282 7280 7282 7280 7282 7280 <t< td=""><td>0 5752 6038 2 439* 278</td><td>D 2125 2206</td><td>18 1731 -1554 19 622* 737</td><td>26 1035 -1096 27 1141 -1247</td><td>29 1641 -1497 30 1297 1315 31 1505 -1430</td><td>2,01L 0 3669 -3687</td><td>20 765 643</td><td>9 705* -517 13 912 658</td><td>21 1536 -1279</td><td>6+10+L</td></t<>	0 5752 6038 2 439* 278	D 2125 2206	18 1731 -1554 19 622* 737	26 1035 -1096 27 1141 -1247	29 1641 -1497 30 1297 1315 31 1505 -1430	2,01L 0 3669 -3687	20 765 643	9 705* -517 13 912 658	21 1536 -1279	6+10+L
8 386 -3.00 8 105 142 21 105 144 21 105 142 21 105 144 21 105 142 21 105 144 21 105 144 21 105 144 21 105 144 21 105 144 21 105 144 21 105 144 21 105 145 <td>4 778 824 6 2153 2071</td> <td>4 1788 -1945 6 1365 -1583</td> <td>20 1317 -1297 21 2605 2533</td> <td>28 1652 -1044 29 1096 -1255</td> <td>32 1089 893 35 1090 896</td> <td>1 2252 -2230 2 629+ -521</td> <td>22 891 -802 23 1772 1803</td> <td>15 2580 -2623 16 1016 -1084</td> <td>4.8.4</td> <td>0 1272 -1274</td>	4 778 824 6 2153 2071	4 1788 -1945 6 1365 -1583	20 1317 -1297 21 2605 2533	28 1652 -1044 29 1096 -1255	32 1089 893 35 1090 896	1 2252 -2230 2 629+ -521	22 891 -802 23 1772 1803	15 2580 -2623 16 1016 -1084	4.8.4	0 1272 -1274
14 5056 - 4025 20 1103 799 25 187 - 1721 41 1102 1184 23.54 5 888 - 408 26 587 - 70 23 1842 1209 28 1848 - 1730 7 1217 23/17 16 796 005 22 1500 -1427 26 448640 0 5 888 - 478 26 587 - 75 21 512 21 520 21 1024 - 642 8 1487 1403 18 640 -576 22 1570 1412 27 1444 - 1326 147.1 0 514 + 5375 7 570 153 28 198 - 969 14 1600 - 1643 14 1139 899 20 511 -464 '32 1749 -1553 28 073 - 954 12 024 - 6427 24 322 1405 9 121 3483 3 88.4 30 1248 - 1272 30 1248 - 1274 30 135 31 164 - 1274 30 1248 - 1274	10 2375 -2317	14 2063 -2450 18 1672 1595	23 559+ 52 24 1080 1058	35 1467 -1396 37 1544 1486	36 1541 1479	3 1747 -1853 4 530* -185	24 663 793 25 1257 -1339	21 1593 -1824 22 2134 -2260	0 1629 1503 3 1081 763	7.7.L
18 660 -576 28 1570 142 17 1466 1250 2541 6 582 25 20 3012 3483 3484. 22 1487 1505 15 1250 -1472 22 311 -464 32 170 1017 0 1286 1274 2 128 16 30 1184 30 128 -1274 30 128 163 30 128 128 -1274 2 128 1274 2 328 30 1183 30 128 -1274 30 1184 30 128 1183 30 128 1284 128 1183 30 128 129 1374 129 1274 129 1274 129 1274 129 1274 129 128 129 128 129 128 129 128 129 128 129 128 129 128 129 128 129 128 129 128 129 128 129 128 129 128	14 5066 -4925 16 794 698	20 1103 793 22 1580 -1427	25 1817 -1721 26 648* -460	41 1102 1184	2+3+L 0 514# -375	5 585 498 6 685 -809 7 570+ 153	27 496* -73 28 1198 -989	29 2139 2003	12 1024 -682 14 1600 -1683	8 1497 1403 14 1139 899
22 353*/ 30*/	18 680 -578 20 511 -446	28 1570 1412 32 1749 -1553	27 1444 -1326 28 973 -934 29 1074 1077	1079L 0 1288 3274	1 2500 2561 2 432* 146	8 852 825 9 781 765	29 3912 3483 30 1158 1163	3+8+L	22 1487 1505 30 1254 -1274	15 1299 -1472
28 1930 1010 -2228 35 1814 -1702 3 1335 -1439 5 668 656 12 728 364 37 1640 -1782 3 1676 1397 3 11375 -1328 3 1635 -1692 10 158 -1189 1 176 -1125 30 2665 -2382 1 1056 -1552 -1552 4 1242 1106 5 591 71 7 3352 343 16 1972 101 3156 -1189 1 1176 +1125 34 1205 -1185 2 4289 -1264 3 1649 1654 -1892 10 3156 -1189 1 176 +125 34 1205 -1185 2 4289 -1234 16 1972 107 1354 1469 1019 +1286 8 8 9 1 1306 1340 3 1191 +1286 8 9 1 1364 1464 1031	24 563* 456 26 891 887	1.1.L	30 967 -953 31 1647 1566	1 1471 -1489 2 599* 113	3 503+ 417 + 2955 -2984	10 701 -562 11 1454 -1582	32 1050 1052 36 1265 1378	0 1247 -1180 1 1623 1558	4,9,L	7+8+L
34 1203 -1185 2 428 -186 37 1107 1008 36 2693 -2736 3 2180 2090 6 1254 1242 2335 15 2664 2109 15 1646 -1743 6 1071 1058 36 2693 -2736 3 2160 2090 15 1646 -1743 6 1071 1058 44 1606 1631 4 3466 3335 7 654* 515 9 522* -401 16 706* -721 17 992 -1113 7 1202 8 1168 -10725	28 1393 1350 30 2463 -2382	0 2110 -2225 1 1064 -1121	35 1814 -1702 36 1552 -1562	3 1335 -1439 4 1242 1106	5 668 656 6 2574 -2509 7 8882 8434	12 728# 384 13 1375 -1322 14 1972 1970	43 1654 -1892	10 1358 -1189 11 1308 1340	1 1176 -1125 3 1191 -1286	8,9,L
	34 1203 -1185 36 2693 -2736 44 1606 1851	2 428* -186 3 2180 2090 4 3466 3355	71 611 611 61	6 1254 1248 7 854* 515	B 2422 2335 9 552* -401	15 2366 2309 16 706# -721		15 1646 -1743 17 992 -1113	6 1071 1058 7 1295 1202	8 1148 -1025

" The columns are l, $10|F_o|$, $10F_c$.

* Unobserved reflections.

The barium coordination in the present compound is shown in stereo in Fig. 4. Each barium has 10 oxygen neighbors located at the vertices of a pentagonal prism, plus 3 [for Ba(1)] or 5 [for Ba(2)] more oxygens located outside three or all five, respectively, of the side faces of the prism. The coordination is not regular; the Ba-O distances range from 2.6 to 3.4 Å (cf. K-O distances of 2.8 to 3.4 Å in the tetragonal bronze K_xWO_3).

 $Ba_{6+x}Nb_{14}Si_4O_{47}$ differs from the bronzes, of course, in that edge sharing occurs. We may consider this compound, however, as being constructed from blocks of a bronze-like structure (essentially that of $Ba_3Nb_6Si_4O_{26}$), which are joined by edge sharing, much as blocks of ReO_3 -type structure are joined by edge sharing in such compounds as $TiNb_2O_7$ and $TiNb_{24}O_{62}$ (10).

The arrangement of oxygen around niobium and silicon is shown in Fig. 2, and Table II lists interatomic distances and angles. As shown, the NbO₆ octahedra are somewhat distorted. In the case of Nb(1) and Nb(3), this is presumably due to the necessity of fitting so many octahedra together in the edge-sharing region. The distortion, and in particular the tilt away from the vertical, of the Nb(2) octahedra are due primarily to the fact that the oxygens of the Si_2O_7 unit are tightly bound by the silicons, so that the length of the unit is more or less fixed at 4.5 Å. If the octahedra were undistorted and aligned, this would be the Nb(2)-O(2)-Nb(2) distance, corresponding to an Nb-O distance of 2.25 Å. This is rather long compared to the usual Nb-O distance of 1.9-2.1 Å. The tilt of the octahedra brings the niobiums closer together and reduces the Nb(2)–O(2) distance to a reasonable 1.91 Å. In the Si₂O₇ unit, the Si–O distances of 1.62 and 1.63 Å are normal for silicon-containing oxides, and the O-Si-O angles show only slight deviations from the tetrahedral angle of 109.5°. The central Si-O-Si bond is constrained to be linear, as all

three atoms involved are located on a threefold symmetry axis. The linear Si_2O_7 group is rather uncommon, but it has also been found in, for instance, $Ba_3Nb_6Si_4O_{26}$ (and the corresponding tantalum compound), $Sc_2Si_2O_7$ (12), and $NaBa_3Si_2O_7(OH)$ (13), and the evidence is convincing that it does exist in $Ba_{6+x}Nb_{14}Si_4O_{47}$.

Table III lists observed and calculated structure factors for the compound.

Acknowledgments

The authors are grateful to the National Science Foundation for financial assistance. Computations were carried out in the Computer Center of the University of Connecticut, which is supported in part by the grant GJ-9 of the National Science Foundation. Photographs of the figures and of Table III were prepared by the University of Connecticut Photographic Laboratory.

References

- J. R. SHANNON AND L. KATZ, Acta Crystallogr. Sect. B 26, 105 (1970).
- D. M. EVANS AND L. KATZ, J. Solid State Chem., 6, 459 (1973).
- J. M. STEWART, F. A. KUNDELL, AND J. C. BALDWIN, Eds., "The X-ray System," Computer Science Center, Univ. of Maryland, College Park, 1970.
- "International Tables for X-ray Crystallography," Vol. 3. Kynoch Press, Birmingham (1962).
- P.A. VAUGHAN, J. H. STURDIVANT, AND L. J. PAULING, J. Amer. Chem. Soc. 72, 5477 (1950).
- C. K. JOHNSON, ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, TN, 1965.
- 7. K. MEISEL, Z. Anorg. Chem. 207, 121 (1932).
- 8. A. MAGNÉLI, Acta Chem. Scand. 7, 315 (1953).
- 9. A. MAGNÉLI, Ark. Kemi 1, 213 (1949).
- R. S. ROTH AND A. D. WADSLEY, Acta Crystallogr. 19, 26 (1965).
- "International Tables for X-ray Crystallography," Vol. 1. Kynoch Press, Birmingham (1965).
- 12. D. W. J. CRUICKSHANK, J. LYNTON, AND G. A. BARCLAY, Acta Crystallogr. 15, 491 (1962).
- 13. O. S. FILIPENKO, E. A. POBEDIMSKAJA, V. I. PONOMAREV, AND N. V. BELOV, Sov. Phys.-Dokl. 16, 703 (1972).